

Bidirectional conversion
to/from CSV for nested

JSON data

Ben Webb

github.com/
OpenDataServices/

flatten-tool/

Abstract:

A well defined nested format like JSON can be useful
for defining a data standard. However, not
everyone finds it easy to publish and consume
JSON. For the Open Contracting and 360Giving
data standards we've taken the hybrid approach of
a canonical JSON representation with bidirectional
conversion to/from spreadsheets. Since this
involves converting between nested and flat
representations we've called our software Flatten-
Tool: https://github.com/OpenDataServices/flatten-
tool/

A quick introduction to what I do, so it makes sense
when I use these names later in the talk.

I work for a small workers co-op called Open Data
Services

http://opendataservices.coop/

Part of what we do is provide technical help desk and
software tool development for data standards
including

The Open Contracting Data Standard (OCDS), which
is for public disclosure on all stages of a contracting
process:

http://standard.open-contracting.org/latest/en/

And 360Giving, which is a UK grants standard.
http://www.threesixtygiving.org/

Why multiple
formats?

In order to care about conversion, it means we care
about multiple formats in the first place, why is this?

There's a few different reasons for this, but one
comes from number #15 of the W3C's best
practices for data on the web:

https://www.w3.org/TR/dwbp/#dataFormats

Basically, make open data available in a range of
formats to meet the needs of different users.
Developers may want JSON, researchers might
prefer a spreadsheet format.

Why not just CSV?

● “RFC 4180 proposes a specification for the
CSV format, and this is the definition commonly
used. However, in popular usage "CSV" is not a
single, well-defined format.”

● Encodings differ between developer best
practice (UTF-8) and Excel's export (Windows-
1252)

Quote from wikipedia:
https://en.wikipedia.org/wiki/Comma-separated_val
ues#Specification

People sometimes claim CSV as both:
* A potentially well defined format that developers will

like producing / consuing
* An easy format for less technical publishers to

produce, by export from their existing software.

However these definitions of CSV are not consistent.

One particular problem is that CSV doesn't specify
encoding information. Modern developers are often
of the opinion “everything UTF-8”, but Excel doesn't
play nicely for this!

flatten-tool

https://github.com/OpenDataServices/flatten-tool/

Therefore for OCDS and 360Giving, we use a better
defined, and more consistently understood format
like JSON as our canonical representation.

We still want to provide spreadsheet users a means
to publish and use this data, so we want conversion
in both directions between spreadsheets and
JSON.

This is what flatten-tool does. It flattens nested JSON
into spreadsheet, and vice versa.

flatten-tool is an open source command line tool and
Python library.

We also make use of it as a library in the web based
validation and data quality tools for 360Giving and
OCDS.

XLSX Conf?

Part of our model with flatten-tool is to isolate dealing
with the quirks of spreadsheets produced by less
technical users in one piece of software.

Throughout this talk, I'm going to be saying
“Spreadsheet”, rather than CSV, because flatten-
tool supports both CSV and XLSX.

Whilst XLSX has many bad properties as a data
interchange format it gives us some extra metadata
about what spreadsheet users were trying to do
(encodings, number vs string formats etc.).

The flatten-tool model “lets us do this” because it
isolates the pain of dealing with XLSX files in one
tool, and everything else deals with nice JSON.

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

/main/1/d

/main/1/d

/main/0/a/b

(JSON Pointer:
RFC6901)

How does it work?

We've made some assumptions based on the data
we're working with.

We assume we mostly care about a list of many
similar JSON objects (with possibly some extra
metadata at the top level).

We can identify each value in our JSON using
JSON pointer, which looks like this...

We then remove the /main/{number} and use the
remainder (in bold) as our column headings.

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

Here's what the spreadsheet looks like.

Flatten-tool can convert between these in either
direction.

The top level key “main” is specified as a
commandline argument.

This is somewhat “nested”, but what's more
interesting is how to deal with arrays.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

/main/0/a/0/b

/main/0/a/1/b

/main/1/a/0/b

/main/1/a/1/b

This is what the JSON pointer for items in arrays
looks like.

Again the part we'd use for our spreadsheet headings
is in bold.

There's a few different “shapes” of spreadsheet that
you could use to represent this (so the next few
slides will all have this same JSON on the right
hand side):

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

… the simplest of these is to have one column for
each JSON pointer.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

This means there's one column for entry in the array.

Flatten-tool supports this for unflattening
(spreadsheet→JSON) but not the other way round
atm.

This is not very useful for large arrays, but can be
useful for smaller cases. e.g. useful when the
standard has an array for additional Classifications,
and people have two additional classifications they
want to add, they can easily just double up the
classification columns in their spreadsheet).

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

For larger arrays what we really want is some sort of
relational structure.

flatten-tool implements this by having multiple sheets
(or multiple CSVs).

This is the shape of spreadsheet that we support for
conversion in both directions.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

So you can see that consecutive array items are in
different rows in one column of the related sheet.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

In order to relate the two sheets, we need a common
id column for both.

The 360Giving and OCDS standards mandate these
ids because they're useful for relational data
models like these.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

We also support conversion //from// a third shape
which is single sheet format with repeated rows
with duplicate values for items not in the array.

((((((I think this format is more confusing than multiple
sheets, but some existing tools use it, and it was
easy for us to implement.)))))

{

 "main": [

 {

 "id": "1",

 "d": "6",

 "a": [

 {

 "id": "2",

 "b": [

 {

 "c": "3"

 },

 {

 "c": "3a"

 }

]

 },

 {

 "id": "4",

 "b": [

 {

 "c": "5"

 },

 {

 "c": "5a"

 }

]

 }

]

 },

Back to multisheet…

We can describe arrays nested within arrays by
having all the necessary sheets....

 {
 "id": "7",
 "d": "12",
 "a": [
 {
 "id": "8",
 "b": [
 {
 "c": "9"
 },
 {
 "c": "9a"
 }
]
 },
 {
 "id": "10",
 "b": [
 {
 "c": "11"
 },
 {
 "c": "11a"
 }
]
 }
]
 }
]
}

… and id fields for every parent we need to identify.

Using the JSON Schema

● Types
● Templates
● Titles
● Automagic arrays

So, the basic examples we've just seen demonstrate
what flatten-tool can do without any schema.
360Giving and OCDS both have a JSON schema
which flatten-tool can use to infer extra information
(although the non-schema behaviour is also
important because in both people can specify extra
fields not in the schema).

Types:
We can use the types from the schema, e.g. to

determine whether a number in a CSV should
actually be a JSON number or a string.

Templates: Next slide

In order to create their spreadsheet data, publishers
often want a “template” of the correct column
headers to fill in.

flatten-tool can generate these.

So from the OCDS JSON schema, we can produce...

Multiple csvs in the multisheet shapes or one
multisheet xlsx.

Using the schema

● Types
● Templates
● Titles
● Automagic arrays

Titles:

For 360Giving, where we're trying to get small UK
charitable trusts to publish data about their grants,
the JSON pointer style headings are a bit too
unfriendly.

Therefore, we make use of the more human readable
titles from the JSON schema.

So we can generate a template with these titles, and
flatten-tool also supports these for conversion.

Additonally these titles are case and space
insensitive, to make it harder for publishers to
“break” the template.

Benficiary Location:Identifier → benficiaryLocation/0/id
Benficiary Location:Name → benficiaryLocation/0/name

As part of this titles support, we're using colons
instead of slashes, as we think this is more intuitive
to many spreadsheet users who would read '/' as
either or.

Finally, we drop the numbers used to indicate arrays
from the JSON pointers, as it “looks confusing”, and
we're able to infer it from the schema instead.

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

(((Continuing to use to help publishers and users of
the 360Giving and OCDS standards)))

Fixing bugs, making it easier to use
Produce better warnings and error messages

(((Continuing to tidy up the code)))

The projects about a year and a half old now, and
we've recently made some changes to many-to-one
relationships based problems we found with the
previous approach.
These changes are done now, but there's still
plenty of refactoring & cleanup to be done as a
result.

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

● (((Sharing our work with the community.))
● We've been keeping fairly quiet about flatten-tool

until we've made those changes. Now that we
have, we're interested in trying to share it more
widely, as it may be useful to other people
(hence this talk).

….Possibly:
● Supporting more standards (e.g. we've discussed

the possibility of adding XML support to flatten
IATI data)

● Support for more spreadsheet formats (e.g. ODS
(open office's spreadsheet format), Open
Knowledge's data packages)

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

CoVE - Convert, Validate, Explore

Cove - http://cove.opendataservices.coop/

Powers the OCDS Validator and the 360Giving Data
Quality Tool.

Amongst other features, provides a web interface to
flatten-tool for these standards.

You get a button to click to convert.

If you supply a spreadsheet we do the conversion
automatically, because Cove's other functionality
e.g. validation works on the JSON.

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

Bidirectional conversion
to/from CSV for nested

JSON data

Ben Webb

github.com/
OpenDataServices/

flatten-tool/

Why multiple
formats?

Why not just CSV?

● “RFC 4180 proposes a specification for the
CSV format, and this is the definition commonly
used. However, in popular usage "CSV" is not a
single, well-defined format.”

● Encodings differ between developer best
practice (UTF-8) and Excel's export (Windows-
1252)

flatten-tool

https://github.com/OpenDataServices/flatten-tool/

XLSX Conf?

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

/main/1/d

/main/0/a/b

(JSON Pointer:
RFC6901)

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

/main/0/a/0/b

/main/0/a/1/b

/main/1/a/0/b

/main/1/a/1/b

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

{

 "main": [

 {

 "id": "1",

 "d": "6",

 "a": [

 {

 "id": "2",

 "b": [

 {

 "c": "3"

 },

 {

 "c": "3a"

 }

]

 },

 {

 "id": "4",

 "b": [

 {

 "c": "5"

 },

 {

 "c": "5a"

 }

]

 }

]

 },

 {
 "id": "7",
 "d": "12",
 "a": [
 {
 "id": "8",
 "b": [
 {
 "c": "9"
 },
 {
 "c": "9a"
 }
]
 },
 {
 "id": "10",
 "b": [
 {
 "c": "11"
 },
 {
 "c": "11a"
 }
]
 }
]
 }
]
}

Using the JSON Schema

● Types
● Templates
● Titles
● Automagic arrays

Using the schema

● Types
● Templates
● Titles
● Automagic arrays

Benficiary Location:Identifier → benficiaryLocation/0/id
Benficiary Location:Name → benficiaryLocation/0/name

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

CoVE - Convert, Validate, Explore

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

Bidirectional conversion
to/from CSV for nested

JSON data

Ben Webb

github.com/
OpenDataServices/

flatten-tool/

Abstract:

A well defined nested format like JSON can be useful
for defining a data standard. However, not
everyone finds it easy to publish and consume
JSON. For the Open Contracting and 360Giving
data standards we've taken the hybrid approach of
a canonical JSON representation with bidirectional
conversion to/from spreadsheets. Since this
involves converting between nested and flat
representations we've called our software Flatten-
Tool: https://github.com/OpenDataServices/flatten-
tool/

A quick introduction to what I do, so it makes sense
when I use these names later in the talk.

I work for a small workers co-op called Open Data
Services

http://opendataservices.coop/

Part of what we do is provide technical help desk and
software tool development for data standards
including

The Open Contracting Data Standard (OCDS), which
is for public disclosure on all stages of a contracting
process:

http://standard.open-contracting.org/latest/en/

And 360Giving, which is a UK grants standard.
http://www.threesixtygiving.org/

Why multiple
formats?

In order to care about conversion, it means we care
about multiple formats in the first place, why is this?

There's a few different reasons for this, but one
comes from number #15 of the W3C's best
practices for data on the web:

https://www.w3.org/TR/dwbp/#dataFormats

Basically, make open data available in a range of
formats to meet the needs of different users.
Developers may want JSON, researchers might
prefer a spreadsheet format.

Why not just CSV?

● “RFC 4180 proposes a specification for the
CSV format, and this is the definition commonly
used. However, in popular usage "CSV" is not a
single, well-defined format.”

● Encodings differ between developer best
practice (UTF-8) and Excel's export (Windows-
1252)

Quote from wikipedia:
https://en.wikipedia.org/wiki/Comma-separated_val
ues#Specification

People sometimes claim CSV as both:
* A potentially well defined format that developers will

like producing / consuing
* An easy format for less technical publishers to

produce, by export from their existing software.

However these definitions of CSV are not consistent.

One particular problem is that CSV doesn't specify
encoding information. Modern developers are often
of the opinion “everything UTF-8”, but Excel doesn't
play nicely for this!

flatten-tool

https://github.com/OpenDataServices/flatten-tool/

Therefore for OCDS and 360Giving, we use a better
defined, and more consistently understood format
like JSON as our canonical representation.

We still want to provide spreadsheet users a means
to publish and use this data, so we want conversion
in both directions between spreadsheets and
JSON.

This is what flatten-tool does. It flattens nested JSON
into spreadsheet, and vice versa.

flatten-tool is an open source command line tool and
Python library.

We also make use of it as a library in the web based
validation and data quality tools for 360Giving and
OCDS.

XLSX Conf?

Part of our model with flatten-tool is to isolate dealing
with the quirks of spreadsheets produced by less
technical users in one piece of software.

Throughout this talk, I'm going to be saying
“Spreadsheet”, rather than CSV, because flatten-
tool supports both CSV and XLSX.

Whilst XLSX has many bad properties as a data
interchange format it gives us some extra metadata
about what spreadsheet users were trying to do
(encodings, number vs string formats etc.).

The flatten-tool model “lets us do this” because it
isolates the pain of dealing with XLSX files in one
tool, and everything else deals with nice JSON.

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

/main/1/d

/main/1/d

/main/0/a/b

(JSON Pointer:
RFC6901)

How does it work?

We've made some assumptions based on the data
we're working with.

We assume we mostly care about a list of many
similar JSON objects (with possibly some extra
metadata at the top level).

We can identify each value in our JSON using
JSON pointer, which looks like this...

We then remove the /main/{number} and use the
remainder (in bold) as our column headings.

{

 "main": [

 {

 "a": {

 "b": "1",

 "c": "2"

 },

 "d": "3"

 },

 {

 "a": {

 "b": "4",

 "c": "5"

 },

 "d": "6"

 }

]

}

Here's what the spreadsheet looks like.

Flatten-tool can convert between these in either
direction.

The top level key “main” is specified as a
commandline argument.

This is somewhat “nested”, but what's more
interesting is how to deal with arrays.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

/main/0/a/0/b

/main/0/a/1/b

/main/1/a/0/b

/main/1/a/1/b

This is what the JSON pointer for items in arrays
looks like.

Again the part we'd use for our spreadsheet headings
is in bold.

There's a few different “shapes” of spreadsheet that
you could use to represent this (so the next few
slides will all have this same JSON on the right
hand side):

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

… the simplest of these is to have one column for
each JSON pointer.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

This means there's one column for entry in the array.

Flatten-tool supports this for unflattening
(spreadsheet→JSON) but not the other way round
atm.

This is not very useful for large arrays, but can be
useful for smaller cases. e.g. useful when the
standard has an array for additional Classifications,
and people have two additional classifications they
want to add, they can easily just double up the
classification columns in their spreadsheet).

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

For larger arrays what we really want is some sort of
relational structure.

flatten-tool implements this by having multiple sheets
(or multiple CSVs).

This is the shape of spreadsheet that we support for
conversion in both directions.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

So you can see that consecutive array items are in
different rows in one column of the related sheet.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

In order to relate the two sheets, we need a common
id column for both.

The 360Giving and OCDS standards mandate these
ids because they're useful for relational data
models like these.

{
 "main": [
 {
 "id": "1",
 "a": [
 {
 "b": "2",
 "c": "3"
 },
 {
 "b": "4",
 "c": "5"
 }
],
 "d": "6"
 },
 {
 "id": "7",
 "a": [
 {
 "b": "8",
 "c": "9"
 },
 {
 "b": "10",
 "c": "11"
 }
],
 "d": "12"
 }
]
}

We also support conversion //from// a third shape
which is single sheet format with repeated rows
with duplicate values for items not in the array.

((((((I think this format is more confusing than multiple
sheets, but some existing tools use it, and it was
easy for us to implement.)))))

{

 "main": [

 {

 "id": "1",

 "d": "6",

 "a": [

 {

 "id": "2",

 "b": [

 {

 "c": "3"

 },

 {

 "c": "3a"

 }

]

 },

 {

 "id": "4",

 "b": [

 {

 "c": "5"

 },

 {

 "c": "5a"

 }

]

 }

]

 },

Back to multisheet…

We can describe arrays nested within arrays by
having all the necessary sheets....

 {
 "id": "7",
 "d": "12",
 "a": [
 {
 "id": "8",
 "b": [
 {
 "c": "9"
 },
 {
 "c": "9a"
 }
]
 },
 {
 "id": "10",
 "b": [
 {
 "c": "11"
 },
 {
 "c": "11a"
 }
]
 }
]
 }
]
}

… and id fields for every parent we need to identify.

Using the JSON Schema

● Types
● Templates
● Titles
● Automagic arrays

So, the basic examples we've just seen demonstrate
what flatten-tool can do without any schema.
360Giving and OCDS both have a JSON schema
which flatten-tool can use to infer extra information
(although the non-schema behaviour is also
important because in both people can specify extra
fields not in the schema).

Types:
We can use the types from the schema, e.g. to

determine whether a number in a CSV should
actually be a JSON number or a string.

Templates: Next slide

In order to create their spreadsheet data, publishers
often want a “template” of the correct column
headers to fill in.

flatten-tool can generate these.

So from the OCDS JSON schema, we can produce...

Multiple csvs in the multisheet shapes or one
multisheet xlsx.

Using the schema

● Types
● Templates
● Titles
● Automagic arrays

Titles:

For 360Giving, where we're trying to get small UK
charitable trusts to publish data about their grants,
the JSON pointer style headings are a bit too
unfriendly.

Therefore, we make use of the more human readable
titles from the JSON schema.

So we can generate a template with these titles, and
flatten-tool also supports these for conversion.

Additonally these titles are case and space
insensitive, to make it harder for publishers to
“break” the template.

Benficiary Location:Identifier → benficiaryLocation/0/id
Benficiary Location:Name → benficiaryLocation/0/name

As part of this titles support, we're using colons
instead of slashes, as we think this is more intuitive
to many spreadsheet users who would read '/' as
either or.

Finally, we drop the numbers used to indicate arrays
from the JSON pointers, as it “looks confusing”, and
we're able to infer it from the schema instead.

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

(((Continuing to use to help publishers and users of
the 360Giving and OCDS standards)))

Fixing bugs, making it easier to use
Produce better warnings and error messages

(((Continuing to tidy up the code)))

The projects about a year and a half old now, and
we've recently made some changes to many-to-one
relationships based problems we found with the
previous approach.
These changes are done now, but there's still
plenty of refactoring & cleanup to be done as a
result.

What's next?

● Continuing to use to help publishers and users of the
360Giving and OCDS standards

● Continuing to tidy up the code
● Sharing our work with the community.

Possibly:
● Supporting more standards (e.g. XML for IATI)
● Support for more spreadsheet formats (e.g. ODS, data

packages)

● (((Sharing our work with the community.))
● We've been keeping fairly quiet about flatten-tool

until we've made those changes. Now that we
have, we're interested in trying to share it more
widely, as it may be useful to other people
(hence this talk).

….Possibly:
● Supporting more standards (e.g. we've discussed

the possibility of adding XML support to flatten
IATI data)

● Support for more spreadsheet formats (e.g. ODS
(open office's spreadsheet format), Open
Knowledge's data packages)

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

CoVE - Convert, Validate, Explore

Cove - http://cove.opendataservices.coop/

Powers the OCDS Validator and the 360Giving Data
Quality Tool.

Amongst other features, provides a web interface to
flatten-tool for these standards.

You get a button to click to convert.

If you supply a spreadsheet we do the conversion
automatically, because Cove's other functionality
e.g. validation works on the JSON.

Ben Webb

ben.webb@
opendataservices.coop

github.com/
OpenDataServices/

flatten-tool/

